Основные характеристики аргонового лазера

В отличие от гелий-неонового лазера аргоновый лазер имеет более высокое усиление и может быть получена существенно большая выходная мощность. Выходная мощность возрастает с плотностью тока непропорционально, поэтому для работы аргонового лазера желательны узкая трубка и большой ток. В аргоновых лазерах могут использоваться плотности тока более 100 А/см². Высокая плотность тока вызывает разогрев и существенно влияет на конструкцию аргонового лазера.

По сообщениям максимальная выходная мощность аргонового лазера достигает 150 Вт, но для промышленных образцов наиболее характерные значения мощности составляют 2-10 Вт. Полная выходная мощность аргонового лазера обычно является суммарным излучением на всех различных длинах волн. Излучение на одной длине волны может быть получено при использовании призмы в резонаторе лазера. Вследствие дисперсии призмы луч лишь одной длины волны будет падать по нормали к зеркалу, так что лазер может работать только на одной из всех возможных длин волн. Однако при этом уменьшается выходная мощность. В табл. 1 приведены характерные значения выходной мощности для различных длин волн обычного промышленного лазера. Такой лазер классифицируется как 4-ваттный лазер, поскольку он может излучать 4 Вт при работе без призмы, когда может одновременно присутствовать излучение всех длин волн. Выделение одной заданной линии осуществляется поворотом призмы.

Таблица 1 Характерные значения выходной мощности

Длина волны, мкм

Мощность, мВт

0,5145

1400

0,5017

200

0,4965

300

0,4880

1300

0,4765

500

0,4727

100

0,4658

50

0,4579

150

0,3511; 0,3638

100 (специальные зеркала)

В непрерывных аргоновых лазерах часто используется магнитное поле. Поле является продольным, т.е. магнитное поле параллельно оси лазера. Основной эффект магнитного поля заключается в увеличении концентрации электронов а плазме. Это связано с тем, что электроны вынуждены двигаться по спиралям вокруг магнитных силовых линий, в результате чего потери электронов на стенках уменьшаются.

Максимальный ток аргонового лазера ограничен физическим износом и эрозией внутренних поверхностей. Обычная конструкция аргонового лазера представляет собой набор электрически изолированных, радиационно-охлаждаемых сегментов, размещенных внутри кварцевой вакуумной колбы, в которой осуществляется разряд. Сегменты с узкими отверстиями изготовляются из материалов с минимальной эрозией. Из-за большой плотности тока в газоразрядной трубке аргонового лазера должны использоваться высокотемпературные материалы для изготовления ограничивающих разряд каналов. Описаны самые разнообразные конструкции аргоновых лазеров. Обычно используются такие материалы, как графит, кварц или керамика из окиси бериллия. Окись бериллия, по-видимому, особенно хорошо противостоит распылению в электрическом разряде. Ее наиболее важное преимущество - высокая теплопроводность.

Аргоновые лазеры могут излучать в ультрафиолете на длинах волн 0,3511 и 0,3638 мкм. Благодаря этому аргоновые лазеры являются одними из немногих коммерчески доступных источников ультрафиолетового лазерного излучения. Некоторые промышленные газовые лазеры снабжены системой перенаполнения с целью компенсации уменьшения давления газа в трубке с течением времени. Подпитку газом можно осуществлять с помощью выключателя, открывающего клапан к резервуару с аргоном. Трубка может быть дополнена до требуемого оптимального давления. Эта возможность увеличивает срок службы промышленных аргоновых лазеров.

Прочтите также:

Цифровой измеритель разности двух напряжений
По сути необходимо разработать устройство, преобразующее аналоговый сигнал в, эквивалентный ему, цифровой код. Т.е. замены сигнала серией импульсов за некоторое определенное время. Та ...

Тонкопленочные резисторы
Зарождение и развитие микроэлектроники как нового научно-технического направления, обеспечивающего создание сложной радиоэлектронной аппаратуры (РЭА), непосредственно связаны с кризисной ...

Экранированная катушка индуктивности рабочая частота – 5 МГц; индуктивность - 20 мкГн
Катушка индуктивности является элементом радиоэлектронных средств, функционирование которой определяется эффектом перехода энергии электрического поля в энергию магнитного поля вследстви ...

Основные разделы

Copyright © 2008 - 2021 www.techmatch.ru