Примесная проводимость

Наличие примесных уровней в полупроводниках существенно изменяет положение уровня Ферми EF. Расчеты показывают, что в случае полупроводников n-типа уровень Ферми EFo при 0 К расположен посередине между дном зоны проводимости и донорным уровнем (рис. 2, а).

С повышением температуры все большее число электронов переходит из донорных состояний в зону проводимости, но, помимо этого, возрастает и число тепловых флуктуаций, способных возбуждать электроны из валентной зоны и перебрасывать их через запрещенную зону энергий. Поэтому при высоких температурах уровень Ферми имеет тенденцию смещаться вниз (сплошная кривая) к своему предельному положению в центре запрещенной зоны, характерному для собственного полупроводника.

Уровень Ферми в полупроводниках р-типа при Т = 0 К EFo располагается посередине между потолком валентной зоны и акцепторным уровнем (рис. 2, б). Сплошная кривая опять-таки показывает его смещение с температурой. При температурах, при которых примесные атомы оказываются полностью истощенными и увеличение концентрации носителей происходит за счет возбуждения собственных носителей, уровень Ферми располагается посередине запрещенной зоны, как в собственном полупроводнике.

Проводимость примесного полупроводника, как и проводимость любого проводника, определяется концентрацией носителей и их подвижностью. С изменением температуры подвижность носителей меняется по сравнительно слабому степенному закону, а концентрация носителей – по очень сильному экспоненциальному закону, поэтому проводимость примесных полупроводников от температуры определяется в основном температурной зависимостью концентрации носителей тока в нем. На (рис. 2, в) дан примерный график ln σ от 1/Т для примесных полупроводников. Участок АВ описывает примесную проводимость полупроводника. Рост примесной проводимости полупроводника с увеличением температуры обусловлен в основном повышением концентрации примесных носителей. Участок ВС соответствует области истощения примесей, участок CD описывает собственную проводимость полупроводника.

Фотопроводимость полупроводников

Увеличение электропроводности полупроводников может быть обусловлено не только тепловым возбуждением носителей тока, но и под действием электромагнитного излучения. В таком случае говорят о фотопроводимости полупроводников. Фотопроводимость полупроводников может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (hν ≥ ∆E), могут совершаться перебросы электронов из валентной зоны в зону проводимости (рис. 3, а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная электронами и дырками.

Рис.3 Схемы фотопроводимости полупроводника:

а) собственная ф/п;

б) примесная ф/п, донорная примесь, п/п n-типа;

в) примесная ф/п, акцепторная примесь, п/п p-типа.

Если полупроводник содержит примеси, то фотопроводимость может возникать и при hν < ∆E: для полупроводников с донорной примесью фотон должен обладать энергией hν ≥ ∆ED, а для полупроводников с акцепторной примесью hν ≥ ∆EA. При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n-типа (рис. 3, б) или из валентной зоны на акцепторные уровни в случае полупроводника р-типа (рис. 3, в). В результате возникает примесная фотопроводимость, являющаяся чисто электронной для полупроводников n-типа и чисто дырочной для полупроводников р-типа.

Из условия hν = hc/λ можно определить красную границу фотопроводимости – максимальную длину волны, при которой еще фотопроводимость возбуждается:

для собственных полупроводников λ0 = hc/∆E

для примесных полупроводников λ0 = hc/∆Eп

(∆Eп – в общем случае энергия активации примесных атомов).

Учитывая значения ∆E и ∆Eп для конкретных полупроводников, можно показать, что красная граница фотопроводимости для собственных полупроводников приходится на видимую область спектра, для примесных же полупроводников – на инфракрасную.

Тепловое или электромагнитное возбуждение электронов и дырок может и не сопровождаться увеличением электропроводности. Одним из таких механизмов может быть механизм возникновения экситонов. Экситоны представляют собой квазичастицы – электрически нейтральные связанные состояния электрона и дырки, образующиеся в случае возбуждения с энергией, меньшей ширины запрещенной зоны. Уровни энергии экситонов располагаются у дна зоны проводимости. Так как экситоны электрически нейтральны, то их возникновение в полупроводнике не приводит к появлению дополнительных носителей тока, вследствие чего экситонное поглощение света не сопровождается увеличением фотопроводимости.

Перейти на страницу: 1 2 3

Прочтите также:

Цифровой тахометр
Современный этап развития научно-технического прогресса характеризуется широким применением электроники и микроэлектроники во всех сферах жизни и деятельности человека. Важную роль при э ...

Фильтр верхних частот Баттерворта
До недавнего времени результаты сопоставления цифровых и аналоговых устройств в радиоаппаратуре и технических средствах электросвязи не могли не вызывать чувства неудовлетворённости. Циф ...

Технологические процессы микросборки плат
В 1946 году заводу № 197 поручается модернизация РЛС П-3, для чего создаётся специальная лаборатория под руководством Е. В. Бухвалова. Официальной датой основания предприятия считается ...

Основные разделы

Copyright © 2008 - 2022 www.techmatch.ru